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Challenges of In-Memory Computing Systems for Neural Networks:

* Software training: existing tradeoff between generalization
and robustness.

 Hardware architecture: some of network functionalities
cannot be efficiently supported by existing designs.

* Hardware inferencing: device stochastic noise will decrease
the inferencing accuracy.

* Hardware training: each training iteration will rewrite the
cells on crossbar and may wear out the hardware.

My Ph. D. works and contributions:

" Generalized algorithm enhances robustness against
weight perturbation.

= Architecture design enables efficient Transformer in
PIM system.

= Systematic framework builds robust and efficient PIM
System.

= Hardware-software co-design helps reliable in-memory

training design.

Develop Robust Preserving Optimization [DAC’ 22]

Highlights:

* Unify and improve generalization and quantization
performance under bounded weight perturbation.

Methods:

* Hessian-enhanced regularization optimization (HERO)

Hessian eigenvalue regularization

* Finite difference
approximation along high
curvature direction

* Adaptive perturbation
strength across different
layers
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Gradient of regularization

* Approximate
L, gradient

* Apply SAM
gradient as
first-order
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(a) HERO, test accuracy: 93.44% (b) SGD, test accuracy: 92.82%

 HERO generates smoother loss surface and provides
stronger perturbation tolerance.
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 HERO has better testing accuracy.
 HERO exhibits higher robustness against post-training
quantization.

Enable Efficient Transformer with PIM [ICCAD’ 20]

Highlights:
* Accelerate the scaled dot-product attention of Transformer

using ReRAM-based PIM with ReTransformer design.

* Eliminate some data dependency by avoiding writing

intermediate results using the proposed matrix
decomposition technique.

Challenge: MatMul layer deals with results from the previous step.
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Negative factor to latency,
energy, and endurance.

Optimized MatMul: use matrix decomposition in scaled dot-
product attention to eliminate the data dependency and
reduce the computation latency.
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Sub-matrix pipeline: granularity for

Transformer inference.
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v'Compared to GPU and Pipelayer, ReTransformer improves
computing efficiency by 23.21x and 3.25x, respectively.

Explore Robust and Efficient PIM System [ICCAD’ 21]

Highlights:
* Achieve high inferencing accuracy under stochastic noise.
» Effectively explore area-, energy-, latency-efficient designs.

Methods:

* ReSNA: ReRAM-based Stochastic-Noise-Aware Training
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v Our CF-MESMO is capable of finding the Pareto optimal results.

v'We can avoid high-latency or high-energy design based on our
criteria and budget.

v'From the Pareto set, we can see that high-cell resolution setting

or high-frequency setting appears in the Pareto front due to the
ReSNA method.
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Build Endurance-aware Training [TCAD In Revision]

Highlights:

* Propose ESSENCE framework with an endurance-aware
structured stochastic gradient pruning method.

* Dynamically adjust the probability of gradient update based
on the current update counts to reduce the number of
rewrite accesses.

Row-wise or column-wise update The expectation of

the endurance-aware
structured stochastic
pruning gradient
remains an unbiased
gradient towards the
minimization target

Reduce the update probability if
the gradient amplitude is low

Reduce the update probability if
the existing number of update in
that row/column is large.

EXPERIMENT RESULTS ON THE CIFAR-10 DATASET.
(a) ResNet20

Methods Mean Update Counts (Savings)  Accuracy
SGD 117.30 x 103 (1x) 90.67%

No Endurance 33.26 x 103 (3.52%) 90.49%
Essence Row 11.45 x 103 (10.24 %) 90.51%
Essence Column 11.40 x 103 (10.29%) 90.93%

(b) VGG19-BN

Methods Mean Update Counts (Savings)  Accuracy
SGD 117.30 x 103 (1x) 92.66%

No Endurance 25.64 x 103 (4.57%) 92.43%
Essence Row 11.45 x 103 (10.24 %) 92.61%
Essence Column 11.58 x 103 (10.13 %) 92.41%
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Update count distribution in the last convolution layer in the ResNet20
network: Left: No Endurance, Right: Essence Row.

My works covers the following topics:

* design efficient PIM-based architecture for state-of-the-art
models.

* guarantee the performance under the noise of the real
hardware.

* enable the reliable and durable PIM-based hardware
training.

My works contribute to the goal of achieving efficient and

robust PIM designs and implementations with

algorithmic/architectural /systematic innovations.
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