Improving the Efficiency and Robustness of In-Memory Computing in Emerging Technologies

Ph.D. Candidate: Xiaoxuan Yang Advisors: Dr. Hai (Helen) Li, Dr. Yiran Chen **Duke University**

Duke | CENTER for COMPUTATIONAL EVOLUTIONARY INTELLIGENCE

Background and Overview	Enable Efficient Transformer with PIM [ICCAD' 20]	Build Endurance-aware Training [TCAD In Revision]
Software Training A M G Image: Constrained by the state of	 Highlights: Accelerate the scaled dot-product attention of Transformer using ReRAM-based PIM with ReTransformer design. Eliminate some data dependency by avoiding writing intermediate results using the proposed matrix decomposition technique. 	 Highlights: Propose ESSENCE framework with an endurance-aware structured stochastic gradient pruning method. Dynamically adjust the probability of gradient update based on the current update counts to reduce the number of rewrite accesses.
Challenges of In-Memory Computing Systems for Neural Networks:	<i>Challenge</i> : MatMul layer deals with results from the previous step.	Row-wise or column-wise update The expectation of
 Software training: existing tradeoff between generalization and robustness. Hardware architecture: some of network functionalities 	Output=QK Write intermediate MatMul K results onto ReRAM.	Reduce the update probability if the gradient amplitude is lowthe endurance-aware structured stochastic pruning gradient
 cannot be efficiently supported by existing designs. Hardware inferencing: device stochastic noise will decrease the inferencing accuracy. 	se in the energy, and endurance.	Reduce the update probability if the existing number of update in that row/column is large. remains an unbiased gradient towards the minimization target
 Hardware training: each training iteration will rewrite the cells on crossbar and may wear out the hardware. 	Optimized MatMul: use matrix decomposition in scaled dot- product attention to eliminate the data dependency and	EXPERIMENT RESULTS ON THE CIFAR-10 DATASET. (a) ResNet20

My Ph. D. works and contributions:

- Generalized algorithm enhances robustness against weight perturbation.
- Architecture design enables efficient Transformer in PIM system.
- Systematic framework builds robust and efficient PIM System.
- Hardware-software co-design helps reliable in-memory training design.

Develop Robust Preserving Optimization [DAC' 22]

Highlights:

- Unify and improve generalization and quantization performance under bounded weight perturbation. **Methods:**
- Hessian-enhanced regularization optimization (HERO)

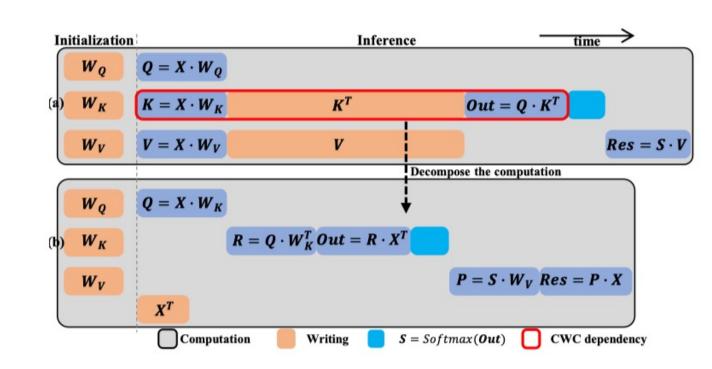
Hessian eigenvalue regularization

- $L_{r}^{i}(W^{i}) = ||\nabla L(W^{i} + hz^{i}) \nabla L(W^{i})||^{2},$ $\nabla L(W^i)$ $||W^i||_2 ||\nabla L(W^i)||_2$
- Finite difference approximation along high curvature direction
- Adaptive perturbation

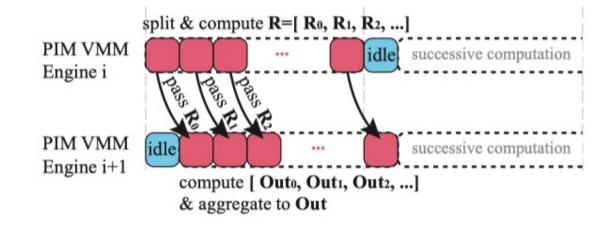
Approximate

 L_r gradient

gradient as


first-order

n


regularizatio

• Apply SAM

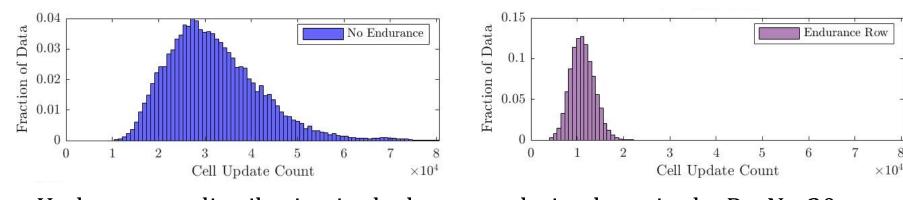
reduce the computation latency.

Sub-matrix pipeline: design a fine granularity for Transformer inference.

✓ Compared to GPU and Pipelayer, ReTransformer improves computing efficiency by 23.21× and 3.25×, respectively.

Explore Robust and Efficient PIM System [ICCAD' 21]

Highlights:


- Achieve high inferencing accuracy under stochastic noise.
- Effectively explore area-, energy-, latency-efficient designs.

Methods:

• ReSNA: ReRAM-based **Stochastic-Noise-Aware** Training

Accuracy	Mean Update Counts (Savings)	Methods
90.67%	$117.30 \times 10^3 \ (1 \times)$	SGD
90.49%	$33.26 \times 10^3 (3.52 \times)$	No Endurance
90.51%	$11.45 \times 10^3 (10.24 \times)$	Essence Row
90.93%	$11.40 \times 10^3 \ (10.29 \times)$	Essence Column
	$11.40 \times 10^3 (10.29 \times)$	Essence Column

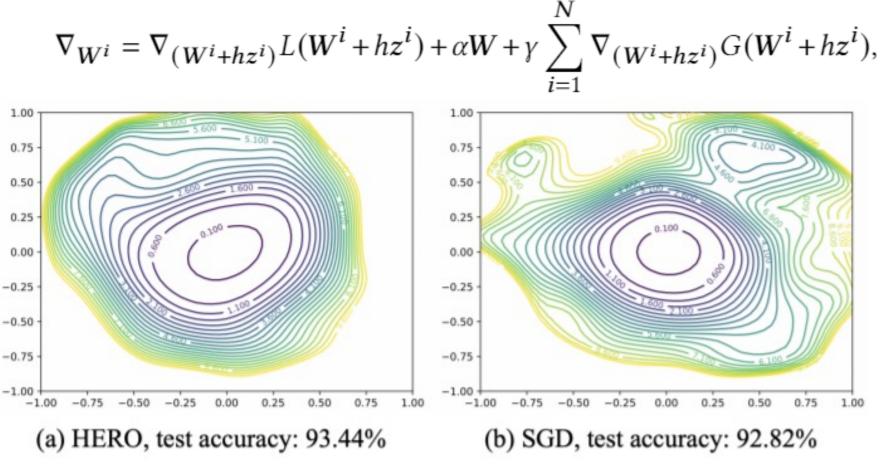
	(b) VGG19-BN				
Methods	Mean Update Counts (Savings)	Accuracy			
SGD	$117.30 \times 10^3 \ (1 \times)$	92.66%			
No Endurance	$25.64 imes 10^3$ (4.57×)	92.43%			
Essence Row	$11.45 \times 10^3 (10.24 \times)$	92.61%			
Essence Column	$11.58 \times 10^3 (10.13 \times)$	92.41%			

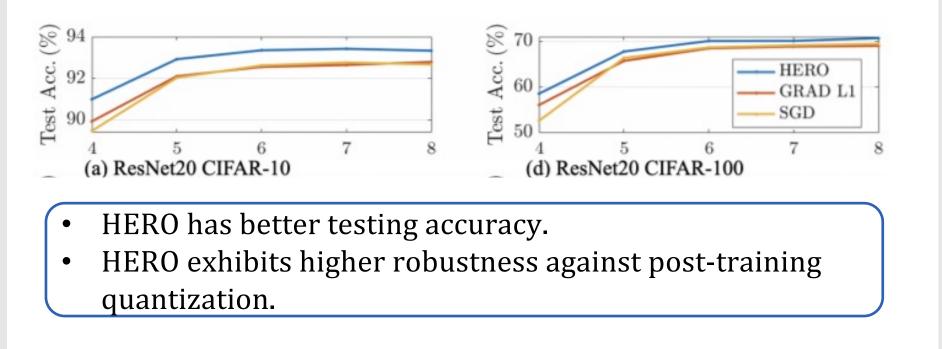
Update count distribution in the last convolution layer in the ResNet20 network: Left: No Endurance, Right: Essence Row.

Summary

My works covers the following topics:

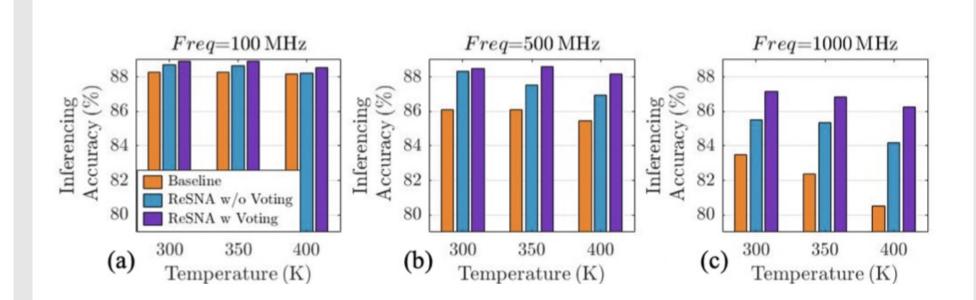
- design efficient PIM-based architecture for state-of-the-art models.
- guarantee the performance under the noise of the real hardware.
- enable the reliable and durable PIM-based hardware training.

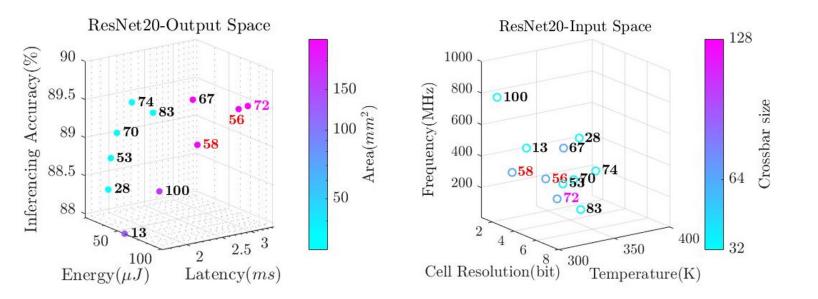

My works contribute to the goal of achieving efficient and robust PIM designs and implementations with algorithmic/architectural/systematic innovations.


strength across different layers

- $G(U) := ||\nabla L(U) \nabla L(W^i)||^2$
- $\nabla L_r^i(\mathbf{W}^i) = \nabla_{(\mathbf{W}^i + h\mathbf{z}^i)} G(\mathbf{W}^i + h\mathbf{z}^i) \cdot \nabla_{\mathbf{W}^i}(\mathbf{W}^i + h\mathbf{z}^i)$ $\approx \nabla_{(\mathbf{W}^i + hz^i)} G(\mathbf{W}^i + hz^i).$

Overall optimization step


HERO generates smoother loss surface and provides stronger perturbation tolerance.



CF-MESMO: Continuous Fidelity Max-value Entropy Search **Multi-objective Optimization**

o <i>Cell</i>	• Programming	o Inference
Resolution	Noise	Accuracy
• Crossbar Size	• Thermal Noise	o Area
• Frequency	• Shot Noise	0 Energy
0 Temperature	o RTN	 Latency

Evaluation MO Input, MO Next Candidate MO Input, Fidelity Selection Objectives 🖣 Process **Fidelity Selection**

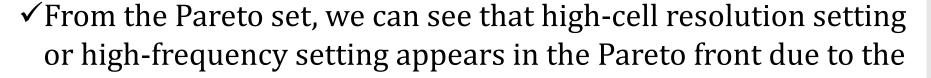
✓ Our CF-MESMO is capable of finding the Pareto optimal results. ✓ We can avoid high-latency or high-energy design based on our criteria and budget.

Reference

Publications presented in this poster:

[1] X. Yang*, H. Yang*, N. Gong, and Y. Chen, "HERO: hessianenhanced robust optimization for unifying and improving generalization and quantization performance," in DAC 2022. [2] X. Yang, B. Yan, H. H. Li, and Y. Chen, "ReTransformer: ReRAM-based processing-in-memory architecture for transformer acceleration," in ICCAD 2020.

[3] **X. Yang**, S. Belakaria, B. K. Joardar, H. Yang , J. R. Doppa, P. P. Pande, K. Chakrabarty, and H. H. Li, "Multi-objective optimization of ReRAM crossbars for robust DNN inferencing under stochastic noise," in ICCAD 2021.


[4] X. Yang, H. Yang, J. R. Doppa, P. P. Pande, K. Chakrabarty, and H. H. Li, "ESSENCE: Exploiting structured stochastic gradient pruning for endurance-aware ReRAM-based in-memory training systems," TCAD in Revision.

Other publications on this topic:


[5] **X. Yang**, C. Wu, M. Li, and Y. Chen, "Tolerating noise effects in processing-in-memory systems for neural networks: A hardware-software codesign perspective," Adv. Intell. Sys. 2022.

[6] C. Wu, X. Yang, H. Yu, R. Peng, I. Takeuchi, Y. Chen, and M. Li, "Harnessing optoelectronic noises in a photonic generative network," Sci. Adv. 2022.

[7] C. Wu, X. Yang, Y. Chen, and M. Li. "Photonic Bayesian Neural Network using Programmed Optical Noises." JSTQE Under review.

